Architectural Concerns for Flexible Data Management

lonut Emanuel Subasu, Patrick Ziegler, Klaus R. Dittrich, Harald Gall
Department of Informatics, University of Zurich

{subasu,pziegler,dittrich,gall}@ifi.uzh.ch

ABSTRACT

Evolving database management systems (DBMS) towards
more flexibility in functionality, adaptation to changing re-
quirements, and extensions with new or different compo-
nents, is a challenging task. Although many approaches
have tried to come up with a flexible architecture, there
is no architectural framework that is generally applicable to
provide tailor-made data management and can directly inte-
grate existing application functionality. We discuss an alter-
native database architecture that enables more lightweight
systems by decomposing the functionality into services and
have the service granularity drive the functionality. We pro-
pose a service-oriented DBMS architecture which provides
the necessary flexibility and extensibility for general-purpose
usage scenarios. For that we present a generic storage ser-
vice system to illustrate our approach.

1. INTRODUCTION

Current Database Management Systems (DBMS) are ex-
tremely successful software products that have proved their
capabilities in practical use all over the place. Also from a
research point of view they show a high degree of maturity
and exploration. Despite all progress made so far and de-
spite all euphoria associated with it, we begin to realize that
there are limits to growth for DBMS, and that flexibility is
an essential aspect in DBMS architecture.

Over time DBMS architectures have evolved towards flexi-
bility (see Figure 1). Early DBMS were mainly large and
heavy-weight monoliths. Based on such an architecture, ex-
tensible systems were developed to satisfy an ever growing
need for additional features, such as new data types and
data models (e.g., for relational and XML data). Some of
these systems allowed extensibility through application front
ends at the top level of the architecture [4, 20, 22]. A sim-
ilar approach is taken by aspect-oriented object database
systems such as SADES [2], which support the separation
of data management concerns at the top level of DBMS ar-
chitecture. Based on this, further aspects can be added to

the database as required. By using a monolithic DBMS
structure, however, attempts to change DBMS internals will
hardly succeed, due to the lack of flexibility.

297 G50
H*E@E}”‘ :

Monolithical Extensible Component
DBMS DBMS DBMS

‘ ‘

Adaptable
DBMS

Figure 1: Evolution of DBMS architectures

In response to this, the next step in the evolution of DBMS
architecture was the introduction of Component Database
Systems (CDBS) [7]. CDBS allow improved DBMS flexibil-
ity due to a higher degree of modularity. As adding further
functionality to the CDBS leads to an increasing number of
highly dependent DBMS components, new problems arise
that deal with maintainability maintainability, complexity,
and predictability of system behavior.

More recent architectural trends apply concepts from inter-
face and component design in RISC approaches to DBMS
architectures [6]. RISC style database components, offering
narrow functionality through well-defined interfaces, try to
make the complexity in DBMS architecture more manage-
able. By narrowing component functionality, the behavior
of the whole system can be more easily predicted. However,
RISC approaches do not address the issue of integrating ex-
isting application functionality. Furthermore, coordinating
large amounts of fine-grained components can create serious
orchestration problems and large execution workflows.

Other approaches [13] try to make DBMS fit for new ap-
plication areas, such as bio-informatics, document/content
management, world wide web, grid, or data streams, by ex-
tending them accordingly. These extensions are customized,
fully-fledged applications that can map between complex,
application-specific data and simpler database-level repre-
sentations. In this way, off-the-shelf DBMS can be used to
build specialized database applications. However, adapting
DBMS through a growing number of domain specific ap-
plications causes increasing costs, as well as compatibility
and maintenance problems [21]. Such extensions can lead to
hard wired architectures and unreliable systems [14].

The DBMS architecture evolution shows that, despite many
approaches try to adapt the architecture, there is no ar-
chitectural framework that is generally applicable to pro-

www.manaraa.com

vide tailor made data management and directly integrate
existing application functionality. In addition, none of the
existing approaches can provide sufficient predictability of
component behavior. Finally the ability to integrate ex-
isting application functionality cannot be achieved without
requiring knowledge about component internals. These as-
pects, however, are essential for a DBMS architecture to
support a broad range of user requirements, ranging from
fully-fledged extended DBMS to small footprint DBMS run-
ning in embedded system environments. In consequence of
that, the question arises whether we should still aim at an
ever increasing number of system extensions, or whether it
is time to rethink the DBMS approach architecturally.

In [23] we introduced a service based DBMS architecture
which is based on the concepts of Service-Oriented Archi-
tecture (SOA) [15]. We argue that database services in the
spirit of SOA are a promising approach to bring flexibility
into DBMS architecture, as they are an adequate way to
reduce or extend DBMS functionality as necessary to meet
specific requirements. In this sense, we make DBMS archi-
tecture capable of adapting to specific needs, and, conse-
quently, increase its "fitness for use”.

In this paper, we focus on the notion of flexibility in DBMS
architecture. We take a broad view on database architecture
and present major requirements for a flexible DBMS archi-
tecture. Based on this, we propose a service oriented DBMS
architecture which provides the necessary flexibility and ex-
tensibility for general-purpose usage scenarios. Instead of
taking a bottom up approach by extending the architecture
when needed, we use a top down approach and specialize
the architecture when required. The main feature of our ar-
chitecture is its flexibility and we do not primarily focus on
achieving very high processing performance.

The remainder of the paper is structured as follows. In the
next section we present aspects of flexibility that are relevant
for extensible and flexible DBMS architectures. Section 3 in-
troduces our Service Based Data Management System (SB-
DMS) architecture designed to meet these requirements. We
illustrate and discuss our approach using examples in Sec-
tion 4 and finally conclude in Section 5.

2. ASPECTS OF FLEXIBILITY

From a general view of the architecture we can see three
main aspects that have to be addressed to achieve our goals:
(1) extend the architecture with specialized functionality, (2)
handle missing or erroneous parts, and (3) optimize the ar-
chitecture functionality by allowing it to do the same task in
different ways, according to user requirements or current sys-
tem and architecture configurations. Note that while there
may be other concerns, such as security, ease of maintain-
ability, reliability, or system performance our focus in this
paper is on the three aspects mentioned above, as flexibility
defines the general character of an architecture.

Following the dictionary definition, “flexibility” can be inter-
preted as (1) admitting of being turned, bowed, or twisted
without breaking or as (2) capable of being adapted [19].
This shows that there is not an exact way or metric to mea-
sure or increase the “flexibility” of an architecture. The gen-
eral character of the term can also be seen in the IEEE

definition [1] which sees flexibility as the ease with which
a system or component can be modified for use in appli-
cations or environments other than those for which it was
specifically designed.

From a different perspective, system flexibility can be seen
as the system’s capability of being extensible with new com-
ponents and specializations. Here, “flexibility” refers to the
ease with which a system or component can be modified to
increase its storage or functional capacity [1]. Extensibility
itself, however, does not suffice to create a flexible architec-
ture because it neglects the case of downsizing the architec-
ture. Despite of this, extensibility can be considered as a
subcase of flexibility. If the architecture is not able to en-
able the appropriate changes and adapt to the environment
we say that it has limited flexibility.

To provide a systematic view of the architecture flexibil-
ity, we have to consider different aspects of flexibility [16].
From the above definitions and the general character of the
architecture, the following main aspects of flexibility can be
considered:

e [lexibility by selection refers to the situation in which
the architecture has different ways of performing a de-
sired task. This is the case when different services
provide the same functionality using the same type of
interfaces. In this scenario no major changes at the
architectural level are required.

e Flexibility by adaptation handles the case of absent or
faulty components that cannot be replaced. Here, ex-
isting internal instances of the architecture that pro-
vide the same functionality can be adapted to cope
with the new situation.

o Flexibility by extension allows the system to be adapted
to new requirements and optimizations that were not
fully foreseen in the initial design.

System quality can be defined as the degree to which the
system meets the customer needs or expectations [1]. As
extensions can increase the applicability of a system, flexi-
bility and extensibility are important aspects of the quality
of an architecture, which can be described as its "fitness for
use”. To support tailored “fitness for use”, future architec-
tures should put more emphasis on improving their flexibil-
ity and extensibility according to user needs. In this way
the architecture will have the possibility to be adapted to
a variety of factors, such as the environment in which the
architecture is deployed (e.g., embedded systems or mobile
devices), other installed components, and further available
services. Some users may require less functionality and ser-
vices; therefore the architecture should be able to adapt to
downsized requirements as well.

3. THE SBDMS ARCHITECTURE

Today, applications can extend the functionality of DBMS
through specific tasks that have to be provided by the data
management systems; these tasks are called services and al-
low interoperability between DBMS and other applications

www.manaraa.com

[11]. This is a common approach for web-based applica-
tions. Implementing existing DBMS architectures from a
service approach can introduce more flexibility and exten-
sibility. Services that are accessible through a well defined
and precisely described interface enable any application to
extend and reuse existing services without affecting other
services. In general, Service Oriented Architecture (SOA)
refers to a software architecture that is built from loosely
coupled services to support business processes and software
users. Typically, each resource is made available through in-
dependent services that can be distributed over computers
that are connected through a network, or run on a single
local machine. Services in the SOA approach are accessed
only by means of a well defined interface, without requir-
ing detailed knowledge on their implementation. SOAs can
be implemented through a wide range of technologies, such
as RPC, RMI, CORBA, COM, or web services, not making
any restrictions on the implementation protocols [10]. In
general, services can communicate using an arbitrary pro-
tocol; for example, a file system can be used to send data
between their interfaces. Due to loose coupling, services are
not aware of which services they are called from; further-
more, calling services does not require any knowledge on
how the invoked services complete their tasks.

In [23] we have introduced a Service Based Data Manage-
ment System (SBDMS) architecture that can support tai-
lored extensions according to user requirements. Founding
the architecture on the principles of SOA provides the ar-
chitecture with a higher degree of flexibility and brings new
methods for adding new database features or data types. In
the following we present the architecture using components,
connectors, and configurations, as customarily done in the
field of software architectures [3].

3.1 Architectural Components

Our SBDMS architecture is organized into general available
functional layers (see Figure 2), where each layer contains
specialized services for specific tasks:

Extension Services
(streaming, XML, procedures,
queries , replication...)

&

Data Legend:
Services Semice
S Aditional Service
i Extension < » | v
Services nteraction
Access) OD Ccémpqsed
Services / ervice
= 4 e
’/}‘v 7

Storage ///
Services «—
...Other services...

Figure 2: The SBDMS Architecture [23]

e Storage Services work at byte level and handle the
physical specification of non-volatile devices. This in-
cludes services for updating and finding data.

e Access Services manage physical data representations
of data records and access path structure, such as B-

trees. This layer is also responsible for higher level op-
erations, such as joins, selections, and sorting of record
sets.

e Data Services present the data in logical structures like
tables or views.

e [Extension Services allow users to design tailored ex-
tensions to manage different data types, such as XML
files or streaming data, or integrate their own applica-
tion specific services.

As main components at a low-level, functional services pro-
vide the basic functions in a DBMS, such as storage services
or query services. These services are managed by coordina-
tor services that have the task to monitor the service activity
and handle service reconfigurations as required. These ser-
vices are handled by resource management processes which
support information about service working states, process
notifications, and manage service configurations. To ensure
a high degree of interoperability between services, adap-
tor services mediate the interaction between services that
have different interfaces and protocols. A predefined set of
adapters can be provided to support standard communica-
tion protocol mediation or standard data types, while spe-
cialized adaptors can be automatically generated or manu-
ally created by the developer [17]. Service repositories han-
dle service schemas and transformational schemas, while ser-
vice registries enable service discovery.

3.2 Architectural Connectors

Connectors have the role to define the type of communi-
cation that takes place between software components [8].
Services present their purpose and capabilities through a
service contract that is comprised of one or more service doc-
uments that describe the service [10]. To ensure increased
interoperability, services are described through a service de-
scription document that provides descriptive information,
such as used data types and semantic description of services
and interfaces. A service policy includes service conditions
of interaction, dependencies, and assertions that have to be
fulfilled before a service is invoked. A service quality de-
scription enables service coordinators to take actions based
on functional service properties. To ensure a high degree of
interoperability, service contract documents should be de-
scribed using open formats, such as WSDL or WS Policy.
Service communication is done through well-defined commu-
nication protocols, such as SOAP or RMI. Communication
protocols can be defined according to user requirements and
the type of data exchanged between services. An important
requirement is to use open protocols, rather than implemen-
tation specific technology. This allows one to achieve a high
degree of abstraction and reduces implementation details in
service contracts, which can reduce service interoperability.

3.3 Architectural Configurations

Configurations of the SBDMS depend on the specific envi-
ronment requirements and on the available services in the
system. To be adaptable, the system must be aware of
the environment in which it is running and the available
resources. Services are composed dynamically at run time
according to architectural changes and user requirements.

www.manaraa.com

From a general view we can envision two service phases: the
setup phase and the operational phase. The setup phase con-
sists of process composition according to architectural prop-
erties and service configuration. These properties specify
the installed services, available resources, and service specific
settings. In the operational phase coordinator services moni-
tor architectural changes and service properties. If a change
occurs resource management services find alternate work-
flows to manage the new situation. If a suitable workflow is
found, adaptor services are created around the component
services of the workflows to provide the original functionality
based on alternative services. The architecture then under-
goes a configuration and composition process to set the new
communication paths, and finally compose newly created
services. This is made possible as services are designed for
late binding, which allows a high degree of flexibility and
architecture reconfigurability.

3.4 Architectural Flexibility by Extension
Instead of hard-wiring static components we break down the
DBMS architecture into services, obtaining a loosely cou-
pled architecture that can be distributed. Such a service-
based architecture can be complemented with services that
are used by applications and other services allowing direct
integration and development of additional extensions. In
general, services are dynamically composed to accomplish
complex tasks for a particular client. They are reusable
and highly autonomous since they are accessed only through
well-defined interfaces and clearly specified communication
protocols. This standardisation helps to reduce complexity,
because new components can be built with existing services.
Organising services on layers is a solution to manage and
compose large numbers of services. Developers can then
deploy or update new services by stopping the affected pro-
cesses, instead of having to deal with the whole system, as in
the case of CDBS. System extensibility benefits from the ser-
vice oriented basis of the architecture, due to a high degree
of interoperation and reusability. In this manner future de-
velopment within our architectural framework implies only
low maintenance and development costs.

3.5 Architectural Flexibility by Selection

By being able to support multiple workflows for the same
task, our SBDMS architecture can choose and use them ac-
cording to specific requirements. If a user wants some infor-
mation from different storage services, the architecture can
select the order in which the services are invoked based on
available resources or other criteria. This can be realised
in an automated way by allowing the architecture to choose
required services automatically, either based on a service
description or by the user who manually specifies different
workflows. Using extra information provided by other ser-
vice execution plans, the service coordinators can create task
plans and supervise them, without taking into consideration
an extensive set of variables, because services just provide
functionality and do not disclose their internal structure.

3.6 Architectural Flexibility by Adaptation

Compared with flexibility by selection, flexibility by adap-
tation is harder to achieve. If a service is erroneous or miss-
ing, the solution is to find a substitute. If no other service is
available to provide the same functionality through the same

interfaces, but if there are other components with different
interfaces that can provide the original functionality, the ar-
chitecture can adapt the service interfaces to meet the new
requirements. This adaptation is done by reusing or generat-
ing adaptor services in the affected processes, to ensure that
the service communication is done according to the service
contracts. The main issue here is to make the architecture
aware of missing or erroneous services. To achieve this we
introduce architecture properties that can be set by users
or by monitoring services when existing components are re-
moved or are erroneous. SOA does not provide a general way
to make the architecture aware and adaptable to changes in
the current state of the system. Standardised solutions to
this problems have been proposed by new architectures that
have emerged on the foundations provided by SOA. One
of these is the Service Component Architecture (SCA) [18].
SCA provides methods and concepts to create components
and describe how they can work together. The interactions
between components can be modeled as services, separating
the implementation technology from the provided function-
ality. The most atomic structure of the SCA is the compo-
nent (see Figure 3). Components can be combined in larger
structures forming composites (see Figure 4). Both compo-
nents and composites can be recursively contained.

- properties

1 |
Implementation - Java references
- BPEL

- Composite

Figure 3: SCA Component [18]

Every component exposes functionality in form of one or
more services, providing the number of operations that can
be accessed. Components can rely on other services pro-
vided by other components. To describe this dependency,
components use references. Beside services and references,
a component can define one or more properties. Properties
are read by the component when it is instantiated, allowing
to customize its behaviour according to the current state of
the architecture. By using services and references, a com-
ponent can communicate with other software or components
through bindings. A binding specifies exactly how communi-
cation should be done between the parties involved, defining
the protocol and means of communication that can be used
with the service or reference. Therefore a binding separates
the communication from the functionality, making life sim-
pler for developers and designers [5]. Furthermore, SCA or-

Composite X Composite Y Composite Z
Component Component

A :]

implementation

Composite A Composite B

Figure 4: SCA Composites [18]

www.manaraa.com

ganises the architecture in a hierarchically way, from coarse
grained to fine grained components. This way of organizing
the architecture makes it more manageable and comprehen-
sible [12]. By using component properties, the adaptability
character of the architecture can be easier achieved in a stan-
dardised way. For all these reasons, we include the principles
of SCA into our SBDMS architecture.

3.7 A Storage Service Scenario

To exemplify our approach, we assume a simple storage ser-
vice scenario and demonstrate how the three main aspects of
flexibility from Section 2 can be realised using our proposed
architecture. Figure 5 depicts the situation of adding a new

Buffer e
Coordinator Coordinator

{3 |
{ B | Page
Buffer Manager
Manager

DI File

Manager Manager

Figure 5: Flexibility by extension

service to the architecture. The user creates the required
component (e.g., a Page Coordinator, as shown in Figure 5)
and then publishes the desired interfaces as services in the
architecture. From this point on, the desired functionality
of the component is exposed and available for reuse. The
service contract ensures that communication between ser-
vices is done in a standardised way. In this way we abstract
from implementation details and focus on the functionality
provided by the system components. This allows ease of
extensibility.

Buffer
Coordinator

—_
Relase
Resources

L Bl |
[B | Page
Buffer Manager
Manager

e

Use alternate
service

(L File

Manager CEEry

Figure 6: Flexibility by selection

At some point in time, special events may occur. Assume
that some service S requires more resources. In this case,
S invokes a “Release Resources” method on the coordinator
services to free additional resources (see Figure 6). In our ar-
chitecture component properties can then be set by users or
coordinator services to adjust component properties accord-
ing to the current architecture constraints. In this manner,

other services can be advised to stop using the service due
to low resources.

Coordinator services also have the task to verify the avail-
ability of new services and other resources. In the example in
Figure 6 a service requests more resources. The Buffer Co-
ordinator advises the Buffer Manager to adapt to the new
situation, by setting the appropriate service properties. In
this case the Buffer Manager can use an alternate available
workflow by using other available services that provide the
same functionality. Every component behaves as defined by
the alternate workflows which are managed by service coor-
dinators. If services are erroneous or no longer available, and

Page Manager
notavailable

Buffer
Manager

{ H]
Disk
Manager

Adapted version of Page Manager

Page
Manager

Figure 7: Flexibility by adaptation

other services can provide the same functionality, these can
be used instead to complete the original tasks (see Figure 7).
Even if performance may degrade to to increased work load,
the system can continue to operate. If the service interfaces
are compatible,coordinator services will create alternate pro-
cesses that will compose the equivalent services to complete
the requested task, in this way the architecture recomposes
the services. Otherwise adaptor services have to be created
to mediate service interaction.

4. DISCUSSION

To discuss and further illustrate our architectural concepts,
we present two contrasting examples: a fully-fledged DBMS
bundled with extensions and a small footprint DBMS capa-
ble of running in an embedded system environment.

Users with extensive functional requirements benefit from
the ability of our architecture to integrate existing services
that were developed by the user to satisfy his needs. Ap-
plication developers can reuse services by integrating spe-
cialized services from any architectural layer into their ap-
plication. For example developers may require additional
information to monitor the state of a storage service (e.g.,
work load, buffer size, page size, and data fragmentation).
Here, developers invoke existing coordinator services, or cre-
ate customised monitoring services that read the properties
from the storage service and retrieve data. In large scale
architectures multiple services often provide the same func-
tionality in a more or less specialised way. Since services
are monitored by coordinators that supervise resource man-
agement and because service adaptors ensure correct com-
munication between services, changes or errors in the sys-
tem can be detected and alternate workflows and process
compositions can be generated to handle the new situation.

www.manaraa.com

Ol LAC U Zyl_ﬂbl

If a storage service exhibits reduced performance that no
longer meets the quality expected by the user, our archi-
tecture can use or adapt an alternative storage service to
prevent system failures. Furthermore, storage services can
be dynamically composed in a distributed environment, ac-
cording to the current location of the client to reduce latency
times. To enable service discovery, service repositories are
required. For highly distributed and dynamic settings, P2P
style service information updates can be used to transmit
information between service repositories [9]. An open issue
remains which service qualities are generally important in
a DBMS and what methods or metrics should be used to
quantify them.

In resource restricted environments, our architecture allows
to disable unwanted services and to deploy small collections
of services to mobile or embedded devices. The user can
publish service functionality as web services to ensure a high
degree of compatibility, or can use other communication pro-
tocols that suit his specific requirements. Devices can con-
tain services that enable the architecture to monitor service
activity and functional parameters. In case of a low resource
alert, which can be caused by low battery capacity or high
computation load, our SBDMS architecture can direct the
workload to other devices to maintain the system opera-
tional. Disabling services requires that policies of currently
running services are respected and all dependencies are met.
To ensure this, service policies must be clearly described by
service providers to ensure proper service functioning.

5. CONCLUSIONS

In this paper we proposed a novel architecture for DBMS
that achieves flexibility and extensibility by adopting service-
orientation. By taking a broad view on database architec-
ture, we discussed aspects of flexibility that are relevant for
extensible and flexible DBMS architectures. On this foun-
dation, we designed our SBDMS framework to be generally
applicable to provide tailored data management function-
ality and offer the possibility to directly integrate existing
application functionality. Instead of taking a bottom up
approach by extending an existing DBMS architecture, we
use a top down approach and specialize our architecture to
support the required “fitness for use” for specific application
scenarios, ranging from fully-fledged DBMS with extensive
functionality to small footprint DBMS in embedded systems.
We exemplified how essential aspects of flexibility are met
in our architecture and illustrated its applicability for tailor-
made data management.

In future work we are going to design the proposed archi-
tecture in more detail and define a foundation for concrete
implementations. We plan to take existing light weight
databases, brake them into services, and integrate them into
our architecture for performance evaluations. Testing with
different levels of service granularity will give us insights into
the right tradeoff between service granularity and system
performance in a SBDMS.

6. REFERENCES
[1] IEEE Standard Glossary of Software Engineering
Terminology. IEEE Std 610.12-1990, 10 Dec 1990.
[2] R. Awais. SADES - a Semi-Autonomous Database
Evolution System. In ECOOP ’98: Workshop on

3]

[4]
[5]

[6]

[7]

8]

[9]

(10]
(11]

(12]

(13]
(14]
(15]

(16]

(17]

(18]
(19]

(20]

(21]

(22]

23]

Object-Oriented Technology, pages 24—25. Springer,
1998.

L. Bass and others. Software Architecture in Practice.
AWLP, USA, 1998.

M. Carey et al. The EXODUS Extensible DBMS
Project: An Overview. In Readings in Object-Oriented
Database Systems, pages 474—499. MKP, 1990.

D. Chappel. Introducing SCA. Technical report,
Chappell & Associates, 2007.

S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning
RISC-Style Database System. The VLDB Journal,
pages 1-10, 2000.

K. Dittrich and A. Geppert. Component Database
Systems. Morgan Kaufmann Publishers, 2001.

S. Dustdar and H. Gall. Architectural Concerns in
Distributed and Mobile Collaborative Systems.
Journal of Systems Architecture, 49(10-11):457-473,
2003.

S. Dustdar and W. Schreiner. A Survey on Web
Services Composition. International Journal of Web
and Grid Services, 1(1):1-30, 2005.

T. Erl. SOA Principles of Service Design. PTR, 2007.
A. Geppert et al. KIDS: Construction of Database
Management Systems Based on Reuse. Technical
Report ifi-97.01, University of Zurich, 1997.

M. Glinz et al. The Adora Approach to
Object-Oriented Modeling of Software. In CAiSE
2001, pages 76-92, 2001.

J. Gray. The Revolution in Database System
Architecture. In ADBIS (Local Proceedings), 2004.
T. Harder. DBMS Architecture — New challenges
Ahead. Datenbank-Spektrum (14), 14:38-48, 2005.
S. Hashimi. Service-Oriented Architecture Explained.
Technical report, O’Reilly, 2003.

P. Heinl et al. A Comprehensive Approach to
Flexibility in Workflow Management Systems. WACC
’99, pages 7988, 1999.

H. R. Motahari Nezhad et al. Semi-automated
adaptation of service interactions. In WWW 07,
pages 993-1002, 2007.

OASIS. SCA Service Component Architecture,
Specification. 2007.

Oxford Online Dictionary.
http://www.askoxford.com.

H. Schek et al. The DASDBS Project: Objectives,
Experiences, and Future Prospects. IEEE TKDE,
2(1):25-43, 1990.

M. Stonebraker and U. Cetintemel. "One Size Fits
All”: An Idea Whose Time has Come and Gone. In
ICDE 05, pages 2—-11, 2005.

M. Stonebraker et al. The Implementation of
POSTGRES. IFEE TKDE, 2(1):125-142, 1990.

I. E. Subasu et al. Towards Service-Based Database
Management Systems. In BTW Workshops, pages
296-306, 2007.

www.manaraa.com

